Read the excel file
>>> df = pd.read_excel('/home/ambiorixg12/Downloads/500.xlsx')
Save values as list
lst= df.values.tolist()
Count values from the list
len(lst)
500
Print first and last entry
>> print(lst[0],'\n',lst[-1])
['Gaston', 'Willie', 6009.0, nan, 'Howells Ferry', 'Rd', nan, nan, 'Mobile', 'AL', 36618, '(251) 304-1631', 'Male']
['Paulo', 'Frank', 1801.0, nan, 'Ridgecrest', 'St', nan, nan, 'Valdosta', 'GA', 31601, '(229) 671-9476', 'Male']
Get columns name
headers = df.columns.tolist()
Data type
print(df.dtypes)
-----
Create a dict with the first value and include the column names
God version
df = pd.read_excel('/home/ambiorixg12/Downloads/500.xlsx')
c={df.columns.tolist()[a]:df.values.tolist()[0][a] for a in range(len(df.values.tolist()[0])) }
get the first value of are data set
>>> v=[a for a in df.values.tolist()[0]]
>>>
>>>
>>>
>>> ge colum names
>>> h=[a for a in df.columns.tolist()]
>>> create are dict
>>> new={h[v.index(a)]:a for a in v}
>>> print(new)
{'Last Name': 'Gaston', 'First Name': 'Willie', 'House Number': 6009.0, 'Pre-directional': nan, 'Street': 'Howells Ferry', 'Street Suffix': 'Rd', 'City': 'Mobile', 'State': 'AL', 'Zip Code': 36618, 'Phone Number': '(251) 304-1631', 'Gender': 'Male'}
>>>
Or simplify version
>>> new={h[v.index(a)]:a for a in [a for a in df.values.tolist()[0]]}
---getting header
>>> c={df.columns.tolist()[a] for a in range(len(df.values.tolist()[0])) }
>>> c
{'First Name', 'Gender', 'Pre-directional', 'State', 'House Number', 'Post-directional', 'Last Name', 'Phone Number', 'Street', 'Zip Code', 'City', 'Apartment Number', 'Street Suffix'}
>>>
info=requests.get('https://ipinfo.io/json').json()
>>> df = pd.DataFrame.from_dict(info, orient='index', columns=['value'])
No hay comentarios:
Publicar un comentario